Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas.
نویسندگان
چکیده
Genomic amplification can lead to the activation of cellular proto-oncogenes during tumorigenesis, and is observed in most, if not all, human malignancies, including adenocarcinomas of lung and esophagus. Using a two-dimensional restriction landmark genomic scanning technique, we identified five NotI/HinfI fragments with increased genomic dosage in an adenocarcinoma of the gastroesophageal junction. Four of these amplified fragments were matched within three contigs of chromosome 12 using the bioinformatics tool, Virtual Genome Scan. All three of the contigs map to the 12q13-q14 region, and the regional amplification in the tumor was verified using comparative genomic hybridization analysis. The 12q14 amplicon was characterized using sequence tagged site-amplification mapping with DNA from paired normal-tumor tissues of 75 gastroesophageal and 37 lung adenocarcinomas. The amplicon spans a region of >12 Mb between genes DGKA and BLOV1. The core-amplified domain was determined to be <0.5 Mb between marker WI-12457 and gene IFNG. However, MDM2, a well-documented oncogene of the region, is outside the core-domain. Eleven genes and expressed sequence tags within the amplicon were selected for quantitative reverse transcription-PCR, and DYRK2, a member of the dual-specificity kinase family, was overexpressed in all of the tumors showing gene amplification. Among the sequence tagged site/expressed sequence tag/gene markers tested, DYRK2 demonstrated the highest DNA copy number and the highest level of mRNA overexpression in the tumors. Moreover, DYRK2 mRNA overexpression (>2.5-fold of normal mean) was found in 18.6% of additional 86 lung adenocarcinomas in an assay using oligonucleotide microarrays. DYRK2 mRNA overexpression occurs more frequently than gene amplification in both esophageal and lung adenocarcinomas. This is the first report of amplification and overexpression of DYRK2 in any tumor type.
منابع مشابه
Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2) Correlates with Poor Prognosis in Colorectal Cancer
Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lu...
متن کاملDyrk kinases regulate phosphorylation of doublecortin, cytoskeletal organization, and neuronal morphology.
In a neuronal overexpression screen focused on kinases and phosphatases, one "hit" was the dual specificity tyrosine phosphorylation-regulated kinase (Dyrk4), which increased the number of dendritic branches in hippocampal neurons. Overexpression of various Dyrk family members in primary neurons significantly changed neuronal morphology. Dyrk1A decreased axon growth, Dyrk3 and Dyrk4 increased d...
متن کاملDual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) as a novel marker in T1 high-grade and T2 bladder cancer patients receiving neoadjuvant chemotherapy
BACKGROUND To investigate associations between dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) expression and survival in T1 high-grade or T2 bladder cancer patients treated with neoadjuvant chemotherapy. METHODS The cohort under investigation comprised 44 patients who underwent neoadjuvant chemotherapy for pT1 high-grade or pT2N0M0 bladder cancer at our institution betwe...
متن کاملDYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells.
Dysregulation of the G(1)/S transition in the cell cycle contributes to tumor development. The oncogenic transcription factors c-Jun and c-Myc are indispensable regulators at this transition, and their aberrant expression is associated with many malignancies. Degradation of c-Jun/c-Myc is a critical process for the G(1)/S transition, which is initiated upon phosphorylation by glycogen synthase ...
متن کاملDYRK2 Negatively Regulates Type I Interferon Induction by Promoting TBK1 Degradation via Ser527 Phosphorylation
Viral infection activates the transcription factors NF-κB and IRF3, which contribute to the induction of type I interferons (IFNs) and cellular antiviral responses. Protein kinases play a critical role in various signaling pathways by phosphorylating their substrates. Here, we identified dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) as a negative regulator of virus-tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 63 14 شماره
صفحات -
تاریخ انتشار 2003